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European (-Band Scatterometer Series

Frequency: 5.3 GHz
Polarisation: VV

Resolution: 25/50 km
Daily coverage: < 40 %

Satellites:
ERS-1: 1991-2000
ERS-2: 1995-2011

Image credits: ESA, ESA/AQES Medialab, ESA-P. Carril
FDRALDEYN

MetOp ASCAT

Frequency: 5.255 GHz
Polarisation: VV

Resolution: 15-25 km
Daily coverage: 82 %

Satellites:
MetOp-A: 2006—-2021
MetOp-B: 2012-ongoing
MetOp-C: 2018-0ngoing
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MetOp-SG SCA

Frequency: 5.355 GHz
Polarisations: VV + VH + HH

Resolution: ~ 12.5 km
Daily coverage: ~ 88 %

Satellites:
MetOp-SG-B1: launch 2026
MetOp-5G-B2: launch 2032
Met0Op-SG-B3: launch 2039




Comparable Measurement Principles
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Introduction

= Scatterometer observations provide radiometrically stable and
well-calibrated measurements with high global coverage

= (Continuous data collection extends 40+ years with SCA
= No products currently leverage long-term observation history

=) Fundamental Data Records for Land Dynamics = FDRALDYN
(2024 — 2027]
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Objectives

= Prepare ERS-1/2 (-band
scatterometer (ESCAT) backscatter,
slope and curvature data for
interoperability with current ASCAT
and future SCA missions

= Support scientific research and
operational applications by
collaborating with @ EUMETSAT

B Figure taken from Greimeister-Pfeil (2022)
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Scientific Use Cases

Soil Vegetation Surface water and
moisture monitoring flood dynamics

+ climate change studies, cryospheric research, etc.

= Image credits: Pixabay/M_wie_Moehre, Pixabay/Tom, Pixabay/Tri Le 6/17




Activities and Results

Azimuthal Demon-
Quality Inter- Synthetic correction Slope/ . ;
o Normalised stration of
assess- calibration ESCAT + curvature backscatter scientific
ment with ASCAT experiment Uncertainty variants

estimates potential

= Resulting products:

- backscatter, slope, curvature (including quality flags)
- slope/curvature variants and local slopes

yearly azimuth reference polynomials and yearly uncertainty estimates
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Example Activity 1

= Inter-calibration with MetOp ASCAT:

- correct breaks and trends
- harmonise measurements between fore/mid/aft beams

- calibrate ESCAT measurements to ASCAT to ensure interoperability

P o7 fupeit @esa PE



- #LPS25

y° bias ERS-1 to Metop A
(Before intercalibration - Ascending)
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y° bias ERS-1 to Metop A
(After intercalibration - Ascending)

Amazon Congo Southeast Asia
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Example Activity 2

= Synthetic ESCAT experiment:

- understand the implications of coarse temporal resolution and data gaps
- subsample ASCAT time series to mimic ESCAT temporal sampling

- compare original ASCAT with subsampled ASCAT

oS e fupeit @esa PE



Normalised Backscatter
Site: US Oklahoma ARM
GPI: 980478
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Outreach

= Website: https://fdr4ldyn.project.tuwien.ac.at/
- stay informed with our newsletter

= Jupyter notebooks

- clear, practical guides for accessing
the FDR4LDYN data records

- directly experiment with your own analyses
= Python packages
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https://fdr4ldyn.project.tuwien.ac.at/

In a Nutshell

= Leverage ERS heritage data for interoperability with current ASCAT
and future SCA missions

= Prepare for a 40+ years scatterometer backscatter data record for
land applications serving diverse user communities

= Main activities along the way:
- inter-calibration and interoperability
- azimuthal correction and uncertainty estimation
- alternative methods to retrieve slope and curvature estimates
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Appendix B: Inter-Calibration with ASCAT

« Adapt methodology from Reimer (2014):

- use Amazon and Congo rainforests as reference regions
. azimuth isotropy (< 0.2 dB for ASCAT, < 0.3 dB for ERS)
. temporal stability (< 0.4 dB)
. spatial homogeneity (< 0.15 dB)

- reserve Southeast Asia for validation

- month-wise intra-calibration of sensor beams

- use Metop-A as a reference for inter-calibration of ERS
- calibrate in gamma-nought rather than sigma-nought
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Natural Target Selection Criteria
ERS-212.5 km grid spacing




Appendix B: Inter-Calibration with ASCAT

= Normalise o0 to 40° incidence angle (per month, per azimuth configuration)
= Remove seasonal effects (subtract daily climatology and add back long-term mean)
= Un-normalise and convert to /9
= Fit reference polynomial for each region and orbit direction
~9(Lr, 8) = Bo(Lr, 40°) + By (Lr,40°)-(8 — 40°)
= (alculate deviation between measured and expected backscatter
Cs(Lr, ti, 0, ¢j) = v (L1, i, 6, ¢j) — 7O (L, 6)
= Model deviations as function of incidence angle for each month
Cias(Lt, ti, 0, ¢j) = Co(Lr, ti, 40°, ¢;) (Metop)
Cias(Lt, ti, 8, ¢) = Co(Lr, ti, 40°, ¢;) + Cq(Lr, t;, 40°, ¢;)+(8 — 40°) (ERS)
Compute weighted average of correction coefficients from both regions
weights harmonic sum of MSEs of ~9(Lr, ) and Cias (L7, ti, 6, ¢;)
Apply correction coefficients to backscatter as 2 and convert back to o9

fY‘I?ltra(La ti, 9: ¢J) - ’YO(La ti, 67 d)J) - m(ti: 9: ¢J)
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Appendix C: Synthetic ESCAT Experiment

= Subsampling process:

- remove left swath data and limit incidence angle range to match ESCAT
- shift ESCAT time series by 15 years

- match as many ESCAT timestamps as possible to ASCAT timestamps with
maximum-cardinality matching Hopcroft—Karp algorithm
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Comparison of Time Delta Distributions Between ESCAT and Synthetic ASCAT Time Series
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Slope Time Series
Site: US Oklahoma ARM
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Appendix D: Azimuthal Correction

= Update azimuthal correction:

- yearly correction polynomials (land cover change, RFI, strong point scatterers)

- switch to fixed reference azimuth angle (right swath, mid beam)
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Appendix D: Azimuthal Correction

= Driving mechanisms of azimuthal anisotropy:
- sloping surface backscattering targets with a predominant slope orientation
corner reflectors with a predominant orientation

resonant Bragg scattering
(a) (b) ( (d)
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Appendix D: Azimuthal Correction

= Azimuthal anisotropy is considered noise for most land surface
applications:

- underlying geophysical variable does not depend on viewing geometry

= But:

- can be an indicator of changes in land cover or surface roughness
mm) Publication as dedicated data record

k<
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a) Positive Correction Bias b) No Correction Bias c) Negative Correction Bias
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Appendix E: Uncertainty Estimation (ESD)

« Estimated standard deviation (ESD) = estimation of noise in o°
- starting point of error propagation in TU Wien soil moisture retrieval
- indicator of (residual) azimuthal effects

= ESD is derived from the difference between fore beam c% and
aft beam o°
- computed before and after azimuthal correction

= Yearly calculation to explore temporal dynamics
mm) Publication as dedicated data record
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Appendix E: Uncertainty Estimation (ESD)
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Appendix E: Uncertainty Estimation (ESD)
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Appendix F: Alternative Slope/Curvature

= Current approach: kernel smoother method

= Empirical Bayesian approach:

- simultaneous correction of dynamic (yearly) and estimation of aggregate
(climatology) slope/curvature

= Reqularisation approach:
- mitigates potential artefacts introduced by kernel smoother method
- captures changes in slope/curvature at the right time
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Appendix F: Alternative Slope/Curvature

Response
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