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1 Executive summary
The Algorithm Theoretical Basis Document (ATBD) provides a comprehensive description of the re-
trieval methods and processing chain used to generate the FDR4LDYN data products. These products
are derived from C-band backscatter observations collected by the scatterometers (ESCAT) on board
the European Remote Sensing satellites ERS-1 and ERS-2. The core variables provided are normal-
ized backscatter, slope, and curvature, complemented by ancillary parameters such as yearly azimuthal
correction terms and uncertainty estimates. Multiple variants of the slope and curvature time series are
included in the FDR4LDYN data products to address different application requirements. The data record
is designed to ensure optimal interoperability with the corresponding current Metop ASCAT and future
Metop-SG SCA backscatter observables, supporting the creation of a consistent long-term record of land
surface backscatter. The FDR4LDYN products enable the monitoring of land surface dynamics and sup-
port diverse scientific and operational applications in domains such as soil moisture estimation, vegetation
dynamics, flood monitoring, cryospheric research, and climate studies.

2 Introduction

2.1 Purpose of the document

The Algorithm Theoretical Basis Document (ATBD) is intended to provide a detailed description of the
scientific background and theoretical justification behind the algorithm utilized for the FDR4LDYN data
products based on C-band backscatter observations collected by the scatterometers (ESCAT) onboard the
European Remote Sensing satellites ERS-1 and ERS-2.

2.2 Targeted audience

This document mainly targets:

1. Remote sensing experts interested in the retrieval and error characterization of satellite backscatter
observable data sets.

2. Users of backscatter, slope, and curvature data sets who want to obtain a more in-depth understand-
ing of the algorithm and sources of error.

3 ESCAT on-board ERS-1 and ERS-2

3.1 ERS missions

The first European Remote Sensing satellite, ERS-1, was launched by ESA on 17 July 1991 from Kourou,
French Guiana [1]. As a major precursor to Europe’s current Earth observation missions, ERS-1 built
upon development efforts and feasibility studies initiated in the early 1970s [2]. ERS-1 carried a suite of
instruments designed for comprehensive environmental monitoring of land, water, ice, and atmosphere.
The mission’s primary instrument was the Active Microwave Instrument (AMI), which combined a syn-
thetic aperture radar (SAR) with a wind scatterometer (ESCAT). Additional payload elements included
a radar altimeter, along-track scanning radiometer, precise range and range-rate equipment, and a laser
retro-reflector. Originally designed for a nominal lifetime of three years, ERS-1 significantly exceeded
expectations, operating successfully until March 2000. The mission concluded after nearly nine years of
service following a failure in the spacecraft’s attitude control system. The ERS-2 satellite, launched on
21 April 1995, served as a follow-on mission. It carried an almost identical payload to ERS-1, with the



ATBD
ERS ESCAT FDR4LDYN v1.0 12.5 km

Doc.No: DT2-1
Version: 0.1
Date: 20 June 2025
Page: 5/21

addition of an atmospheric ozone sensor. ERS-2 remained operational for 16 years and was decommis-
sioned in July 2011. Together, ERS-1 and ERS-2 established a 20-year global archive of scatterometer
backscatter measurements. Both satellites operated in a sun-synchronous orbit with an altitude of ap-
proximately 785 km and an inclination of 98.5◦. The nominal orbital period was about 100 minutes. The
ascending node crossing time was 22:15 local mean time (LMT) for ERS-1 and 22:30 LMT for ERS-2.
Each mission employed a 35-day standard orbit repeat cycle, with ERS-1 additionally supporting 3-day
and 168-day repeat cycles for specific mission phases. An overview of key mission parameters is provided
in Table 3.1.

Mission parameter Unit ERS-1 ERS-2

Launch date – 1991-07-17 1995-04-21
Spacecraft mass [kg] 2 384 2 516
ESCAT payload mass [kg] 1 100 1 100
Ground velocity [km/s] 7 7
LMT at ascending node – 22:15 22:30
Orbit type – sun-synchronous sun-synchronous
Orbit height [km] 782–785 782–785

Repeat cycle

43
[orbits] 501 501

2411

3
[days] 35 35

168

Orbits/day
14.333

– 14.314 14.314
14.351

Table 3.1: ERS-1/2 mission parameter overview

3.2 Instrument description

The Active Microwave Instrument (AMI) formed the core of the ERS payload. It was designed as a
multi-mode radar system operating at 5.3 GHz (C-band), integrating the functions of a high-resolution
Synthetic Aperture Radar (SAR) and a lower-resolution wind scatterometer (ESCAT) [3]. The AMI
supported distinct operational modes: image mode and wave mode for SAR acquisitions, and wind mode
for scatterometry. Due to the high power consumption and data rate associated with SAR imaging, image
and wind modes were mutually exclusive. However, a wind/wave mode enabled sequential switching
between wind and wave modes, allowing for concurrent observations of ocean surface wind and wave
fields. In wind mode, AMI functioned as a scatterometer, acquiring backscatter measurements using
three fan-beam antennas with vertical polarization (VV). These antennas were oriented as follows:

• Fore-beam: 45◦ forward-looking relative to the satellite ground track,

• Mid-beam: 90◦ right-looking,

• Aft-beam: 135◦ backward-looking.
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The three beams illuminated a swath approximately 500 km wide (see Figure 3.1). The scatterometer
transmitted rectangular radio frequency (RF) pulses with durations of 130 µs for the fore- and aft-beams
and 70 µs for the mid-beam. The three antennas were operated in a repeating sequence of 32 RF pulses
per beam, starting with the fore-beam. The pulse repetition frequency (PRF) was set to 98 Hz for the fore-
and aft-beams, and 115 Hz for the mid-beam, resulting in a full cycle, referred to as an FMA sequence,
lasting 940.84 ms. Four consecutive FMA sequences corresponded to 3.763 s, covering approximately
25 km along the satellite ground track. Within each 32-pulse sequence per beam:

• 4 internal calibration pulses were recorded. These pulses were replicas of the transmitted signal,
routed through the receiver chain to monitor transmit power and receiver gain, ensuring instrument
stability throughout the mission.

• 28 noise measurements were acquired to characterize system noise, accounting for thermal back-
ground radiation and improving the signal-to-noise ratio of the backscatter signal.

An analog-to-digital converter (ADC) sampled the echo signals, calibration pulses, and noise measure-
ments at 30 kHz. For the mid-beam, this sampling rate translated to an across-track spatial resolution of
approximately 32.4 km at an incidence angle of 18◦, and 14 km at 45.5◦ [4]. An overview of the ESCAT
technical parameters is provided in Table 3.2.

3.3 Ground processing

The sampled echo signals, internal calibration pulses, and noise measurements were stored onboard using
tape recorders following initial onboard processing. These data packages were subsequently downlinked
to ground stations, along with supporting data such as orbit and attitude information and relevant instru-
ment parameters, to enable the required system performance through further on-ground processing. The
ground processing chain comprised several key steps:

1. Internal calibration and signal correction:
The first processing step aimed to enhance the signal-to-noise ratio (SNR) and correct for fluctua-
tions in the transmitter and receiver chains, using the recorded internal calibration data.

2. Conversion to normalized radar cross section (σ0):
The processed power echo samples were then converted to the normalized radar cross section (σ0).
This conversion utilized predetermined normalization factors, which represented the power input
corresponding to a reference backscatter coefficient of unity at the Earth’s surface. The normal-
ization factors were geometry-dependent and provided as look-up tables (LUTs) for each antenna
beam along the orbit.

3. Spatial filtering and gridding:
To improve radiometric resolution and achieve the desired point target response, a spatial filter
was applied to the σ0 samples. The resulting values were mapped onto a predefined grid of nodes
covering the entire swath:

• The central node of the swath was defined by the intersection of the mid-beam boresight with
the Earth’s surface.

• Additional nodes were placed at 25 km intervals in the across-track direction, extending from
the central node toward the swath edges, along a line perpendicular to the satellite ground
track.

• This process was repeated every four FMA sequences (∼3.763 s), corresponding to an along-
track node spacing of 25 km.
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Figure 3.1: Geometrical instrument configuration and resulting orbit grid representation of ERS ESCAT.
(Figure adapted from [5]).

4. Weighted averaging using a Hamming function:
For each antenna beam, σ0 samples within a defined area around each node were averaged in both
along-track and across-track directions. A Hamming function was used to apply weights to the σ0

samples based on their distance from the target node. This step was critical, as it influenced both
the characteristics of the resulting σ0 values and the effective spatial resolution of the final product.

The final output of this processing stage was a set of σ0 triplets—one σ0 value per antenna beam,
assigned to each node in the swath. A detailed description of the ERS-1/2 ESCAT ground processing
chain is provided in [4] and [6].
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Instrument parameter Unit Value

Frequency [GHz] 5.3
Wavelength [cm] 5.66
Band – C-band
Polarization – VV
Swath width [km] 500
Swath offset [km] 200
Beam resolution – Range gate
Spatial resolution [km] 25/50
Radiometric resolution [%] 6.5–7
Dynamic range [dB] 42
Detection bandwidth [kHz] 25
Peak power pulse [W] 4800
Number of pulses per 50 km – 256

fore mid aft

Incidence angle [deg] 25–59 18–47 25–59
Antenna angle [deg] 45 0 −45
Antenna length [m] 3.6 2.5 3.6
Pulse duration [µs] 130 70 130
Pulse repetition interval [ms] 10.21 8.70 10.21
PRF [Hz] 98 115 98
Return echo window duration [ms] 3.93 2.46 3.93
Sampling rate [kHz] 30 30 30
Number of bits for I/Q – 8 8 8
Number of samples – Echo signal – 118 74 118
Number of samples – Calibration pulse – 30 30 30
Number of samples – Noise – 32 32 32

Table 3.2: ESCAT technical parameter overview

4 Retrieval of backscatter observables

4.1 Pre-processing

The retrieval algorithm described in the following sections is based on the high-resolution ERS-2 Scat-
terometer Level 2.0 products (ERS.ASPS20.H), developed in ESA’s SCIRoCCo project from 2014 to
2017. These products serve as the primary input for deriving the FDR4LDYN data record.

1. In the first step, the scatterometer observations were spatially resampled to a fixed Earth grid using
a nearest-neighbor approach. The target grid is a Fibonacci grid with a spatial sampling distance
of 12.5 km, chosen for its favorable geometric properties and consistency with existing ASCAT
products.

2. Following resampling, a comprehensive quality assessment was carried out. Measurements with
compromised quality were filtered based on an evaluation of the available instrument flags.

3. Subsequently, quality control measures were applied to address known inconsistencies and instrument-
related effects. This included the identification of breaks and trends in the data record, which were
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mitigated through intra-calibration across the different antenna beams of the ERS sensors, ensuring
internal consistency of the backscatter measurements over time and across viewing geometries.

4. As a final pre-processing step, inter-calibration with Metop-A ASCAT was performed to enable
seamless integration and comparability with the follow-on mission. This step ensured that the ERS
backscatter data are harmonized with the ASCAT reference and are suitable for combined use in
long-term applications.

In addition, synthetic ESCAT datasets were generated by sub-sampling ASCAT data to match the lower
temporal resolution of the ERS missions. These experiments helped to identify necessary adaptations in
the retrieval of backscatter-derived observables when working with sparser temporal sampling. Insights
from this analysis informed the design of the final FDR4LDYN data processing chain. A detailed dis-
cussion of these pre-processing steps and analyses is provided in a dedicated Quality Assessment,
Quality Control, and ASCAT Interoperability Report [7].

4.2 Correction of azimuth angle dependency

The backscatter signal is influenced by both surface properties – such as dielectric characteristics, rough-
ness, and vegetation cover – and the measurement geometry. In particular, the backscattering coeffi-
cient varies with the incidence angle θ and the azimuth angle ϕ, the latter describing the orientation of
the satellite’s line of sight relative to the surface. In certain regions, notably mountainous terrain and
sandy deserts, azimuthal effects can be especially pronounced due to directional surface features. These
anisotropic scattering behaviors are corrected using a polynomial adjustment to the backscatter signal,
following the method proposed by [8].

The azimuth angle under which a location is observed depends on the sensor’s beam (Fore, Mid, or Aft)
and the satellite’s orbit direction (ascending or descending). For ASCAT, there is an additional distinction
between left and right swath, resulting in twelve unique azimuth configurations (ϕi with i ∈ [1, 12]).
For ESCAT, which collects data only from the right swath, there are six such configurations (ϕi with
i ∈ [1, 6]). For each configuration, the incidence angle dependence of backscatter is modeled using a
second-order polynomial. These polynomials form the basis for correcting azimuthal anisotropy in the
backscatter signal:

σ0
i (θ) = Ai · (θ − 40)2 + Bi · (θ − 40) + Ci (1)

The coefficients of the six second-order polynomials (Ai, Bi, Ci) are determined by fitting each poly-
nomial to all observations within the corresponding azimuth configuration (e.g., all measurements from
the right fore beam in ascending orbit). In the current ASCAT processing, an additional global reference
model (i = 13) is fitted using all available observations across viewing geometries. This model serves
as the baseline against which individual azimuth configurations are corrected. However, since ESCAT
provides only six azimuth configurations, compared to twelve in ASCAT, a different approach is required
going forward. To ensure consistency and interoperability, the reference polynomial has been redefined
based on a specific viewing geometry: the mid-beam of the right swath. This geometry is consistently
available in both ESCAT and ASCAT datasets. The implications of this revised reference selection are
still under evaluation, and a final decision will be documented in a future update of the ATBD. In addi-
tion, the choice between using ascending or descending passes as the reference direction remains open
and will be resolved based on ongoing analysis.

For ESCAT, this results in a total of 3 × 6 = 18 static polynomial coefficients. In previous ASCAT
processing, the difference between the polynomial of each viewing configuration and the global reference
was used to apply a static correction to the backscatter signal. However, this approach assumes that the
angular scattering behavior of land targets remains stable over long periods – a condition that does not
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hold in all regions. For example, urban expansion can introduce new directional reflectors (e.g., building
edges), and vegetation changes along the margins of arid regions, such as those observed in the Sahel [9],
may alter backscatter characteristics over time [8]. To address these limitations, the updated correction
method introduces dynamic reference polynomials. As before, six azimuth configuration subsets are
defined. However, in the dynamic approach, a separate second-order polynomial is fitted for each year
using a five-year rolling window (± 2 years). This approach yields a total of 126 sets of polynomial
coefficients (6 configurations × 21 years). These dynamic coefficients are then used in the yearly azimuth
normalization procedure, ensuring that long-term changes in backscatter behavior are properly accounted
for. A schematic illustration of the azimuthal correction procedure, using an example for a yearly subset
and an incidence angle of 40◦, is shown in Figure 4.1.

Figure 4.1: Procedure for calculating correction biases through second-order polynomials for three spe-
cific satellite beam measurements along with the static reference polynomial derived from the
entire dataset. The correction bias for a point at a given incidence angle is determined by the
difference between these functions and can be positive (a), zero at intersection points (b), or
negative (c). This procedure is consistently applied across all six combinations of fore/mid/aft
beams, and ascending/descending orbits. (Figure from [10]).

This way, the individual incidence angle dependencies of backscatter are adjusted to a common refer-
ence, mitigating azimuth effects:

σ̂0
i,y (θ) = σ0

i,y (θ) + (Aref,y − Ai,y) · (θ − 40)2 + (Bref,y − Bi,y) · (θ − 40) + (Cref,y − Ci,y) (2)

where σ̂0
i,y represents the corrected backscatter for each configuration i and yearly subset y. The fol-

lowing step is using the corrected backscatter, and formulas are written without the hatˆnomenclature.

4.3 Estimated standard deviation (ESD) of backscatter

The Estimated Standard Deviation (ESD) represents a measure of measurement noise in the backscatter
signal and is expressed in decibels (dB). The ESD is derived from the Fore and Aft beam measurements
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(σ0
f and σ0

a) based on the following observation: all three beams observe the same surface target within a
short time interval, and the Fore and Aft beams, in particular, do so at nearly identical incidence angles.
Therefore, in the absence of azimuthal effects, the Fore and Aft measurements are expected to be statis-
tically comparable – that is, drawn from the same underlying distribution. Hence, the expectation of the
difference

δ := E
[
σ0

f − σ0
a

]
= 0 (3)

should be zero, and the variance of this difference can be expressed as twice the variance of one of the
beams (i.e Var [δ] = 2 · Var

[
σ0]). This can be derived using error propagation and neglecting higher-

order terms:

Var [δ] ≈ Var
[
σ0

f

]
·
(

∂δ

∂σ0
f

)2

+ Var
[
σ0

a

]
·
(

∂δ

∂σ0
a

)2
+ 2 · Cov(σ0

f , σ0
a) ·

(
∂δ

∂σ0
f

)
·
(

∂δ

∂σ0
a

)
+ . . . ,

whereby the third term is zero under the assumption of i.i.d. (independent and identically distributed
random variables):

Var [δ] ≈ Var
[
σ0

f

]
· (1)2 + Var

[
σ0

a

]
· (−1)2 + 0 (4)

Assuming equal variances for the fore- and aft-beam, we obtain:

Var [δ] ≈ Var
[
σ0

f

]
+ Var

[
σ0

a

]
= 2 · Var

[
σ0
]

(5)

The previous equation can be rewritten to find the final formula for the ESD:

ESD
[
σ0
]

=

√
Var [δ]

2 (6)

The ESD is computed after strong outliers (defined as δ > Q3 + 3 × IQR or δ < Q1 − 3 × IQR) have
been removed.

4.4 Estimation of slope and curvature

In general, backscatter measurements over land show a strong dependence on the incidence angle, and a
linear function (defined in the dB domain) is usually deemed sufficient to describe this relationship. The
backscatter coefficient at an arbitrary incidence angle σ0 (in dB) can be modelled as:

σ0 (θ) = σ0 (40) + σ′ · (θ − 40) (7)

where 40◦ is the reference incidence angle, σ0 (40) denotes the backscatter at this reference angle
(in dB), and σ′ represents the slope of the backscatter–incidence angle relationship (in dB/degree). For
most land cover types, this linear approximation is valid due to the characteristic decrease in backscatter
with increasing incidence angle. However, in cases where volume scattering becomes significant, such
as in vegetated or snow-covered regions, the backscatter curve may flatten or deviate from linearity at
higher incidence angles. To capture such non-linear behavior, a second-order polynomial is introduced,
incorporating a curvature term σ′′:

σ0 (θ) = σ0 (40) + σ′ · (θ − 40) + 1
2 · σ′′ · (θ − 40)2 (8)
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From a mathematical perspective, Equation 8 represents a Taylor polynomial, as it approximates the
backscatter function using a finite sum of its derivatives evaluated at a single point. In this case, the refer-
ence incidence angle of 40◦ serves as the expansion point. The first derivative, σ′ (in dB/degree), and the
second derivative, σ′′ (in dB/degree2), correspond to the slope and curvature of the backscatter–incidence
angle relationship at this reference point. Once these parameters are known, the Taylor polynomial can
be used to estimate backscatter values at nearby incidence angles. Conversely, by rearranging Equation 8,
the backscatter at the reference incidence angle, σ0(40), can be inferred from a measurement taken at an
arbitrary incidence angle θ.

Several methods have been developed to estimate σ′ and σ′′ over time, all of which are based on the
concept of local slope computation [11]. A local slope provides an instantaneous estimate of the inci-
dence angle dependency of backscatter, derived from differences in the measured signal across beams.
Specifically, σ0

f − σ0
m and σ0

a − σ0
m can be used, since the Fore and Aft beams observe the target at the

same incidence angle (i.e., θf = θa):

σ′
fm =

σ0
m − σ0

f

θm − θf
, σ′

am = σ0
m − σ0

a

θm − θa
(9)

where σ′
fm and σ′

am represent slope estimates at the local incidence angle midpoints between the Mid
and Fore beams, and the Mid and Aft beams, respectively:

θfm = θm + θf

2 , θam = θm + θa

2 (10)

If a sufficiently large and well-distributed sample of local slope estimates is available across the full
range of incidence angles, a first-order approximation of σ′(θ) can be used to estimate the slope σ′ and
curvature σ′′ at 40◦ via linear regression:

σ′ (θ) = σ′ + σ′′ · (θ − 40) (11)

4.4.1 Kernel smoother method

The selection and weighting of local slope values used in the regression model have evolved over time,
influenced by both data availability and computational considerations. A detailed overview of past imple-
mentations can be found in [11]. The approach to estimating σ′ and σ′′ currently being used in ASCAT
processing is based on a Kernel Smoother (KS) method [12]. This implementation allows slope and cur-
vature parameters to be estimated either as a climatology (i.e., one value per day of year, totaling 366
values) or as a daily time series.

For the climatology, regression coefficients are computed for each day of year d0 by selecting local
slope values from all years within a symmetric time window of ±21 days around d0, resulting in a total
kernel width of λ = 42 days. In contrast, for the dynamic time series-based estimation of slope and
curvature, insights from the synthetic ESCAT experiment (see subsection 4.1) revealed the need for a
wider time window in data-sparse regions and periods, particularly after the ERS-2 tape recorder failure.
Unlike the climatology approach, which draws from multiple years, the dynamic method is restricted to
observations within the time window of the given date alone. This limitation reduces data availability and
makes the method more sensitive to temporal gaps. The narrower ±21-day window for dynamic slope
and curvature used in ASCAT processing was found to introduce noisy estimates, frequent data gaps, and
strong edge effects in such conditions in the case of ESCAT data. To mitigate these issues, we adopted
a wider window of ±42 days (i.e., λ = 84 days) for ESCAT, improving temporal robustness in sparse
periods.

For simplicity, the following description focuses on the climatology-based computation. The dynamic
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estimation follows the same principle but is applied to each individual day in the measurement time series
rather than to a fixed day of year. It uses only data within the time window centered on the specific date,
rather than drawing from all available years.

Within the selected time window, local slope values are weighted according to their temporal distance
from d0 using the Epanechnikov kernel function (see [13] and Figure 4.2, Chapter 6):

k(d0, d) = D

(
d − d0

λ

)
(12)

with

D(t) =
{

3
4 · (1 − t2) if |t| ≤ 1
0 else (13)

The Epanechnikov kernel has finite support over the interval [−λ, λ] and is normalized to integrate
to one. The kernel width λ is a key parameter that controls the balance between bias and variance in
the estimate: increasing λ reduces the variance by incorporating more observations but simultaneously
increases the bias due to the inclusion of more distant (and potentially less representative) data points.

Figure 4.2: Example of the Epanechnikov kernel (λ = 42).

Typically, a kernel function is defined over the independent variable – in this case, the incidence angle
θ. However, since the goal here is to estimate the coefficients of the linear approximation (Equation 11)
across the full incidence angle range for a specific day of year d0, the kernel is instead defined over time.
More precisely, it acts as a function of the day of year. All local slope values falling within the interval
|(d − d0)/λ| ≤ 1 are included in the weighted linear regression and are weighted based on their temporal
distance to d0, as defined by the Epanechnikov kernel (see Equation 14).

Let x ∈ RN and y ∈ RN denote the vectors containing the incidence angles θl and corresponding
local slope values σ′

l for all N observations within the kernel support around day d0. Define the design
matrix A ∈ RN×2 such that its first column consists of ones and its second column corresponds to x.
Let W(d0) ∈ RN×N be a diagonal weight matrix, where the i-th diagonal entry is given by the kernel
weight for the i-th observation, i.e., W(d0)[i, i] = k(d0, di). Then, the estimates for σ′ and σ′′ at day d0
are obtained as: (

σ′ (d0)
σ′′ (d0)

)
= (AT W(d0)A)−1AT W(d0)y = By (14)

If the error covariance of the local slope values used in the fit is given by Σl, then the error covariance
of the parameters is given by:
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Σσ′,σ′′ = BΣlBT (15)

At the moment, it is assumed that Σl is homeoscedastic (i.e., the errors for all local slope values have
the same variance s2

l ) and the errors are uncorrelated: Σl = Is2
l , and estimate s2

l from the residuals of
the fit (in order to avoid confusion with σ for the representation of backscatter, the variance notation is
s2).

4.4.2 Regularization method

In addition to the kernel smoother approach, a regularization-based method was developed to better repre-
sent the dynamics of slope and curvature at short time scales [14]. To estimate slope and curvature using
the regularization method, the same local slopes (Equation 9) and local incidence angles (Equation 10)
are used as in the kernel smoother method. All available values of the local slopes and incidence angles
are used in one single estimation for each grid point. Instead of applying weights to the observations,
the first differences of the estimated slope and curvature time series are constrained by including a first
difference matrix (C) and a scalar driving the magnitude of the constraint (γ) in the estimation equation.
The equation to estimate the full time series of slope (σ′) and curvature (σ′′) per grid point becomes:(

σ′

σ′′

)
= (AT A + γ2CT C)−1AT y (16)

Figure 4.3: Response of kernel smoother (blue) and regularization method (red) to an impulse shown in
black: single impulse (a), step (b), double impulse (c) functions, and a step followed by an
exponential decay (d). The regularization response is computed with γ = 8, and the kernel
smoother response is computed with a 21-day half-width. Purple axes correspond to the values
of the regularization and Epanechnikov responses. Black axes denote the values of the input
functions. Figure adapted from [14].

Applying a constraint on the dynamics of the estimated time series, instead of a kernel-based ap-
proach, results in a better correspondence between the timing of changes in the observations, and timing
of changes in the estimated parameters. Figure 4.3 illustrates the difference between the responses of the
kernel smoother and the regularization method to a simplified input signal. The timing of the changes
in the regularized time series shows a better correspondence to the changes in the input signal. A more
elaborate description and comparison of the estimation method can be found in [14].

4.4.3 Empirical Bayesian method

An additional alternative, an empirical Bayesian method, is currently under development and will be de-
scribed in a future version of this document. This approach is planned as a further extension of the current
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kernel smoother method to enhance the robustness and flexibility of slope and curvature estimation.

4.5 Interpolation to reference incidence angle

Once σ′ (d) and σ′′ (d) have been computed on a daily basis d, the incidence angle interpolation can be
applied to the backscatter measurements of each beam b (Fore, Mid, Aft) using:

σ0
b (40) = σ0

b (θb) − σ′ (d) · ∆θb − 1
2 · σ′′ (d) · ∆θ2

b (17)

with ∆θb = θb − 40. The backscatter observations of the three beams interpolated to a common
reference angle are averaged:

σ̄0 (40) = 1
3 ·

∑
b∈{f,m,a}

σ0
b (40) (18)

which gives the final backscatter σ̄0 (40) interpolated at the reference incidence angle. The noise vari-
ance of the interpolated backscatter at the reference incidence angle for each beam b is given by:

Var
[
σ0

b (40)
]

= ESD
[
σ0
]2

+ Var
[
σ′ (d)

]
· ∆θ2

b + 1
4 · Var

[
σ′′ (d)

]
· ∆θ4

b (19)

and after averaging, the noise variance reduces to:

Var
[
σ̄0 (40)

]
= 1

9 ·
∑

b∈{f,m,a}
Var

[
σ0

b (40)
]

(20)

Slope and curvature derived using the regularization method described in subsubsection 4.4.2 are likely
the most suitable choice for normalizing backscatter. This is because they better reflect the timing of
changes observed in the backscatter signal. Further tests will be conducted during the course of the
project to confirm this assumption. Any resulting decisions will be documented in future updates of the
ATBD.

4.6 Known signal characteristics and contextual factors

The FDR4LDYN data record provides consistent, calibrated backscatter, slope, and curvature observa-
tions over global land surfaces. However, the backscatter signal is inherently influenced by a range of
geophysical and observational factors, particularly in complex environments such as dense forests, snow-
covered or frozen soils, open water bodies, wetlands, and urban areas. In these cases, the signal may
exhibit behaviors that differ from typical land surface scattering and may require careful interpretation.
While these effects do not compromise the integrity of the backscatter observations themselves, they can
affect the stability and interpretability of derived downstream variables. Users are therefore encouraged
to consider ancillary datasets when analyzing time series in such regions. Additionally, the dynamic na-
ture of azimuthal anisotropy, subsurface scattering, and seasonal transitions should be taken into account
when assessing temporal changes. These considerations are particularly relevant for applications that
use FDR4LDYN products as input to further retrieval algorithms, including soil moisture estimation or
vegetation dynamics monitoring.

4.6.1 Vegetation

In densely vegetated regions, such as tropical rainforests, C-band microwaves are largely attenuated by
the canopy and do not reach the soil surface. As a result, the backscatter signal carries little to no soil
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information and typically exhibits very low temporal variability, reflecting limited signal sensitivity to
changes in surface conditions.

4.6.2 Desert areas

Desert regions are defined by extremely low soil moisture levels, driven by minimal annual precipitation.
As a result, the backscatter signal in these areas is typically weak and exhibits limited temporal variability.
In particular, sandy deserts can show backscatter values below −20 dB. These environments are also more
susceptible to azimuthal anisotropy and Bragg scattering effects [15]. The latter arises from small-scale
surface ripples on sand dunes, which can enhance the backscatter signal for specific incidence angle
ranges due to coherent scattering mechanisms. Such effects may introduce directional biases and should
be considered when interpreting backscatter, slope, and curvature in arid landscapes.

4.6.3 Subsurface scattering

In arid regions, particularly where soils are very dry, subsurface volume scattering can become a dominant
component of the backscatter signal. Under such conditions, the penetration depth of C-band microwaves
can reach up to several meters, increasing the likelihood of interactions with buried layers such as bedrock.
This phenomenon is especially notable in parts of North Africa, where it can lead to an inverse relationship
between backscatter and surface soil moisture. During dry periods, the signal may originate from deeper,
reflective subsurface layers, resulting in unexpectedly high backscatter values despite a dry surface. Con-
versely, during wet periods, the increased surface moisture reduces the penetration depth, limiting the
signal’s interaction with deeper layers and thus lowering the backscatter. This effect can confound soil
moisture retrieval algorithms, which may falsely interpret increasing backscatter during dry-down as a
rise in surface moisture [16]. While such misinterpretations are not relevant for the FDR4LDYN product
series itself, they should be considered when using the dataset as input for downstream applications.

4.6.4 Snow

The backscatter signal in snow-covered regions is influenced by a range of snowpack properties, including
liquid water content, grain size and shape, snow depth and layering, as well as the roughness of the air–
snow interface. Depending on these factors, different scattering mechanisms may dominate, such as
surface scattering, volume scattering within the snowpack, or reflection from the underlying soil surface
if penetration is sufficient. These complex interactions often reduce the interpretability of the backscatter
signal during snow-covered periods. To support the identification of such conditions, a dynamic snow
cover flag is included in the FDR4LDYN product. This flag is derived from auxiliary land surface model
data provided by the ERA5-Land reanalysis [17] and enables users to mask time periods affected by snow
cover.

4.6.5 Frozen soil

When soil temperatures fall below 0◦C, the dielectric properties of the soil change significantly. As
the water in the soil freezes, its molecules can no longer respond to the incoming microwave signal,
leading to a marked reduction in backscatter. This freezing effect complicates interpretation, particularly
in vegetated areas where plant structures may adapt to cold conditions and partially mask or alter the
signal response. To help mitigate these effects, the FDR4LDYN product includes a dynamic frozen soil
flag, also based on ERA5-Land temperature data. Users are advised to apply this flag to exclude periods
where frozen conditions may impair the reliability of the backscatter signal, depending on their desired
application.
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4.6.6 Surface water and wetlands

In areas with surface water or wetlands, the backscatter signal is primarily governed by surface roughness,
as C-band microwaves penetrate only the uppermost 1–2 mm of the water surface. Calm, open water
behaves like a specular reflector, directing most of the incoming energy away from the satellite sensor
and resulting in very low backscatter values. When surface winds generate small waves, the roughness
increases, leading to enhanced backscatter in the upwind and downwind viewing directions, while the
signal remains low in crosswind directions. This anisotropic behavior should be considered when in-
terpreting backscatter measurements over water bodies and inundated areas, especially in the context of
wind-induced variability or seasonal flooding.

4.6.7 Topographic complexity

In mountainous and topographically complex regions, backscatter signals often exhibit high spatial and
temporal variability. This variability arises from local differences in slope, aspect, and elevation, which
affect the incidence angle and scattering geometry of the microwave signal. Since the FDR4LDYN re-
trieval algorithm does not explicitly account for terrain-induced effects, users should interpret backscatter,
slope, and curvature values in such areas with caution.

4.6.8 Urban areas

In urban and suburban regions, the backscatter signal may be strongly affected by built structures and
heterogeneous land cover. Buildings and other man-made features can introduce distinct scattering mech-
anisms, such as double or multiple reflections between vertical and horizontal surfaces. These effects are
highly directional and can result in unusually high backscatter in specific viewing geometries. Even at
the coarse spatial resolution of ESCAT, strong responses from isolated point-like targets can dominate
the footprint-level signal [8]. As a result, urban areas may exhibit sharp backscatter peaks and increased
anisotropy, which should be carefully considered when interpreting the data in such environments.

4.6.9 Radio frequency interference

The occurrence of radio frequency interference (RFI), especially near urban areas, presents an additional
challenge, as ESCAT’s frequency range began to be shared with mobile telecommunication services start-
ing in 2003. However, recent studies indicate that RFI became a significant issue in Metop ASCAT data
only after the end of the ERS-2 mission in 2011. Therefore, the impact of RFI on ESCAT measurements
is expected to be negligible.
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